a1- nơi đong đầy tình bạn

good
 
Trang ChínhCalendarTrợ giúpTìm kiếmThành viênNhómĐăng kýĐăng Nhập

Share | 
 

 tìm hiểu về lỗ đen vũ trụ

Xem chủ đề cũ hơn Xem chủ đề mới hơn Go down 
Tác giảThông điệp
Admin
Admin
avatar

Tổng số bài gửi : 164
Join date : 18/09/2011
Đến từ : TÂY NINH

Bài gửiTiêu đề: tìm hiểu về lỗ đen vũ trụ   Sat Dec 17, 2011 11:10 am

Lỗ đen, hay hố đen, là một vùng trong không gian có trường hấp dẫn lớn đến mức lực hấp dẫn của nó không để cho bất cứ một dạng vật chất nào, kể cả ánh sáng thoát ra khỏi mặt biên (chân trời sự kiện) của nó, trừ khả năng thất thoát vật chất khỏi lỗ đen nhờ hiệu ứng đường hầm lượng tử. Vật chất muốn thoát khỏi lỗ đen phải có vận tốc thoát lớn hơn vận tốc ánh sáng trong chân không, mà điều đó không thể xảy ra trong khuôn khổ của lý thuyết tương đối, ở đó vận tốc ánh sáng trong chân không là vận tốc giới hạn lớn nhất có thể đạt được của mọi dạng vật chất.

Khái niệm lỗ "đen" trở thành thông dụng vì từ đó ánh sáng không lọt được ra ngoài, nhưng thực ra lí thuyết về lỗ đen không nói về một loại "lỗ" nào mà nghiên cứu về những vùng mà không có gì có thể lọt ra được. Lỗ đen không biểu hiện như những ngôi sao sáng bình thường, mà chúng chỉ được quan sát gián tiếp qua sự tương tác trường hấp dẫn của lỗ đen đối với không gian xung quanh.

Lý thuyết về lỗ đen là một trong những lý thuyết vật lí hiếm hoi, bao trùm mọi thang đo khoảng cách, từ kích thước cực nhỏ (thang Planck) đến các khoảng cách vũ trụ rất lớn, nhờ đó nó có thể kiểm chứng cùng lúc cả thuyết lượng tử lẫn thuyết tương đối. Sự tồn tại của lỗ đen được dự đoán bởi lý thuyết tương đối rộng. Theo mô hình thuyết tương đối rộng cổ điển, không một vật chất hay thông tin nào có thể thoát ra khỏi lỗ đen để tới tầm quan sát bên ngoài được. Tuy nhiên, các hiệu ứng của cơ học lượng tử, không có trong thuyết tương đối rộng cổ điển, có thể cho phép vật chất và năng lượng bức xạ ra khỏi lỗ đen. Một số lý thuyết cho rằng bản chất tự nhiên của bức xạ không phụ thuộc vào những thứ đã rơi vào trong lỗ đen trong quá khứ, nói cách khác lỗ đen xóa sạch mọi thông tin quá khứ, hiện tượng này được gọi là nghịch lý thông tin lỗ đen. Nghịch lý này dần bị các lý thuyết mới đây loại bỏ và cho rằng thông tin vẫn được bảo toàn trong lỗ đen.

Từ năm 1964, khi ngôi sao "tàng hình" Cygnus X-1 của một hệ sao đôi nằm cách Trái Đất 8.000 ly trong chòm sao Thiên Nga được coi là chòm sao đầu tiên, chứng minh cho sự tồn tại của lỗ đen, các lỗ đen khác không chỉ được phát hiện trong Ngân Hà mà còn ở nhiều thiên thể khác. Lỗ đen không chỉ là những "xác chết" của những sao có khối lượng lớn hơn 1,4 M, khi chúng bùng nổ thành các siêu tân tinh trong phạm vi các thiên hà, mà hiện nay nhiều ý kiến cho rằng, tất cả các thiên hà đều chứa một lỗ đen siêu lớn trong vùng nhân.






Khái niệm một vật thể nặng đến độ ngay cả ánh sáng cũng không thể thoát khỏi vật đó đã được một nhà khoa học người Anh John Michell đưa ra vào năm 1783 trên một bài báo khoa học đăng trên tạp chí của Viện hàn lâm Hoàng gia Anh Quốc. Lúc bấy giờ, lý thuyết cơ học cổ điển của Isaac Newton về hấp dẫn và khái niệm vận tốc thoát đã được biết. Michell đã tính rằng, một vật thể có bán kính gấp 500 lần Mặt Trời và có mật độ bằng mật độ Mặt Trời thì vận tốc thoát ở bề mặt của nó bằng vận tốc ánh sáng, và do đó không ai có thể nhìn thấy nó.

Mặc dù ông nghĩ rằng điều đó rất khó xảy ra nhưng vẫn nghiên cứu khả năng rất nhiều các vật thể như thế không thể được quan sát trong vũ trụ.

Năm 1796, một nhà toán học người Pháp Pierre-Simon Laplace cũng đưa ra ý tưởng tương tự trong lần xuất bản thứ nhất và thứ hai của cuốn sách của ông, nhưng trong các lần xuất bản sau thì không đưa vào nữa[1][2]. Trong suốt thế kỷ thứ 19, ý tưởng đó không gây chú ý vì người ta cho rằng ánh sáng là sóng nên không có khối lượng, và do đó không bị ảnh hưởng bởi lực hấp dẫn.

Năm 1915, Einstein đưa ra một lý thuyết hấp dẫn gọi là lý thuyết tương đối rộng. Trước đó ông đã cho thấy ánh sáng bị ảnh hưởng bởi lực hấp dẫn. Mấy tháng sau, Karl Schwarzschild đã đưa ra nghiệm cho trường hấp dẫn của một khối lượng điểm và tiên đoán về lý thuyết sự tồn tại của một vật thể mà ngày nay được gọi là lỗ đen[3]. Ngày nay, bán kính Schwarzschild được coi là bán kính của một lỗ đen không quay, nhưng vào lúc bấy giờ người ta không hiểu rõ về nó. Bản thân Schwarzschild cũng từng nghĩ rằng nó không có ý nghĩa vật lý. Vài tháng sau, Johannes Droste, học trò của Hendrik Lorentz đã một cách độc lập đưa ra các giả thiết về các vật thể như vậy với mô tả cụ thể hơn.[4]

Vào những năm 1920, Subrahmanyan Chandrasekhar đã đưa ra tính toán cho thấy rằng một vật thể không quay có khối lượng lớn hơn một giá trị nhất định mà ngày nay được biết là giới hạn Chandrasekhar, sẽ suy sập dưới lực hấp dẫn của chính nó và không có gì có thể cản trở quá trình đó diễn ra. Tuy nhiên, một nhà vật lý khác là Arthur Eddington chống lại giả thuyết đó và cho rằng chắc chắn sẽ có cái gì đó xảy ra để không cho vật chất suy sụp đến mật độ vô hạn.[5]

Năm 1939, Robert Oppenheimer và H. Snyder tiên đoán rằng các ngôi sao khối lượng lớn sẽ phải chịu quá trình suy sập do hấp dẫn. Các lỗ đen có thể hình thành trong tự nhiên[6]. Trong một thời gian, người ta gọi các vật thể như vậy là các "ngôi sao bị đóng băng" vì sự suy sập sẽ bị chậm đi một cách nhanh chóng và ngôi sao sẽ trở nên rất đỏ khi đạt đến gần giới hạn Schwarzschild[7]. Tuy vậy, các vật thể nặng như thế không được quan tâm lắm cho đến cuối những năm 1960. Phần lớn các nhà vật lý, vào lúc đó, tin rằng lỗ đen là một nghiệm đối xứng cao đặc biệt do Schwarzschild tìm ra, và các vật thể bị suy sập trong tự nhiên sẽ không tạo nên các hố đen.

Việc nghiên cứu về lỗ đen trở nên sôi nổi vào năm 1967 do sự tiến bộ của lý thuyết và thực nghiệm. Stephen Hawking và Roger Penrose đã chứng minh rằng các lỗ đen là các nghiệm tổng quát của lý thuyết hấp dẫn của Einstein, và sự suy sập để tạo nên lỗ đen, trong một số trường hợp, là không thể tránh được. Sự quan tâm đến lĩnh vực này còn được khởi phát từ việc tìm ra sao pulsar[8][9]. Ngay sau đó, nhà vật lý John Wheeler đã sử dụng từ "lỗ đen" để chỉ các vật thể sau khi bị suy sập đến mật độ vô hạn mặc dù trước đó một thời gian, từ "ngôi sao đen" thỉnh thoảng được sử dụng. Tên gọi lỗ đen này được ghi nhận đầu tiên năm 1964 trong ghi chép của Anne Ewing gửi Hiệp hội Tiến bộ Khoa học Hoa Kỳ.[10]







Tại tâm của lỗ đen, bên trong chân trời sự kiện, lý thuyết tương đối rộng tiên đoán có một điểm kỳ dị (singularity), tại đó độ cong của không thời gian trở nên vô hạn và lực hấp dẫn cũng mạnh vô hạn. Không-thời gian bên trong chân trời sự kiện rất đặc biệt, trong đó tất cả các vật chất đều chuyển động vào tâm mà không thể cưỡng lại được (Penrose và Hawking [2]). Điều này có nghĩa là tồn tại một sai lầm về khái niệm về lỗ đen mà John Michell đề xuất trước đây. Theo lý thuyết của Michell, vận tốc thoát bằng vận tốc ánh sáng, tuy vậy, vẫn còn một xác suất lý thuyết để vật thể có thể thoát ra giống như kéo vật thể ra ngoài bằng một sợi dây. Lý thuyết tương đối rộng loại bỏ những kẽ hở (loophole) như thế này vì vật thể nằm trong chân trời sự kiện thì thời gian tuyến sẽ có một điểm kết cho bản thân thời gian, và không thể có được vũ trụ tuyến khả dĩ mà có thể thoát ra khỏi lỗ đen được.

Người ta tin rằng những tiến triển hoặc khái quát hóa lý thuyết tương đối rộng trong tương lai (đặc biệt là hấp dẫn lượng tử) sẽ làm thay đổi suy nghĩ của chúng ta về phần bên trong của lỗ đen. Phần lớn các nhà lý thuyết đều giải thích điểm kỳ dị về toán học của các phương trình là dấu hiệu cho thấy lý thuyết hiện hành là không hoàn thiện, và rằng các hiện tượng mới sẽ được phát hiện khi ta tiến gần đến điểm kỳ dị. Câu hỏi này có thể rất hàn lâm vì giả thuyết giám sát vũ trụ đòi hỏi không thể có mặt các điểm kỳ dị trần trụi trong lý thuyết tương đối rộng: mỗi điểm kỳ dị phải nấp sau chân trời sự kiện và không thể bị khám phá.

Một trường phái tư tưởng khác cho rằng chẳng có điểm kỳ dị nào cả, bởi vì, các lực giống như lực gây ra thủy triều sẽ làm giảm mật độ vật chất khi nó đi xuyên qua chân trời sự kiện. Nếu một nhà du hành vũ trụ lỡ để chân của anh ta rơi vào lỗ đen thì các lực thủy triều dọc theo bán kính sẽ kéo đầu và chân của anh ta theo hai hướng ngược nhau và do đó, sẽ làm giảm mật độ (tức là tăng thể tích) trong khi đó thì lực thủy triều tại một bán kính không đổi có xu hướng kéo hai tay anh ta lại với nhau khi bán kính hội tụ, làm gia tăng mật độ (giảm thể tích). Tuy nhiên, tại chân trời sự kiện, bán kính đó lại song song với nhau trong giản đồ nhúng (giản đồ để hình dung nghiệm Schwarzschild trong không gian Euclide), không hội tụ, do đó, mật độ vật chất sẽ giảm và làm dừng quá trình suy sập hấp dẫn.


Sự hình thành
Hình miêu tả đĩa bồi tụ của lớp plasma quay xung quanh một lỗ đen (ảnh của NASA).Lý thuyết tương đối rộng (cũng như các lý thuyết hấp dẫn khác) không chỉ nói rằng các lỗ đen có thể tồn tại mà còn tiên đoán rằng chúng sẽ được hình thành trong tự nhiên khi có đủ khối lượng trong một vùng không gian nào đó và trải qua một quá trình gọi là suy sụp hấp dẫn. Vì khối lượng bên trong vùng đó tăng lên, nên hấp dẫn của nó cũng mạnh lên, hay nói theo ngôn ngữ của thuyết tương đối, không gian xung quanh bị biến dạng. Khi vận tốc thoát tại một khoảng cách nhất định từ tâm đạt đến vận tốc ánh sáng, thì một chân trời sự kiện được hình thành mà trong đó vật chất chắc chắn bị suy sập vào một điểm duy nhất, tạo nên một điểm kỳ dị.

Các phân tích định lượng về điều này dẫn đến việc tiên đoán một ngôi sao có khối lượng khoảng ba lần khối lượng Mặt Trời, tại thời điểm cuối cùng trong quá trình tiến hóa hầu như chắc chắn sẽ co lại tới một kích thước tới hạn cần thiết để xảy ra suy sập hấp dẫn (thông thường các ngôi sao co lại chỉ dừng ở trạng thái sao neutron). Khi điều này xảy ra, không có bất kỳ lực vật lý nào có thể ngăn cản sự suy sập đó, và một lỗ đen được tạo thành.

Sự suy sập của các ngôi sao sẽ tạo nên các lỗ đen có khối lượng ít nhất gấp ba lần khối lượng Mặt Trời. Các lỗ đen nhỏ hơn giới hạn này chỉ có thể được hình thành nếu vật chất chịu tác động của các áp lực khác ngoài lực hấp dẫn của chính ngôi sao. Áp lực vô cùng lớn cần thiết để có thể gây ra điều này có thể tồn tại vào những giai đoạn rất sớm của vũ trụ, có thể đã tạo nên các lỗ đen nguyên thủy có khối lượng nhỏ hơn nhiều lần khối lượng Mặt Trời.

Các lỗ đen siêu lớn có thể có khối lượng gấp hàng triệu, hàng tỷ lần khối lượng Mặt Trời có thể được hình thành khi có một số lớn các ngôi sao bị nén chặt trong một vùng không gian tương đối nhỏ, hoặc khi có một số lượng lớn các ngôi sao rơi vào một lỗ đen ban đầu, hoặc khi có sự hợp nhất của các lỗ đen nhỏ hơn. Người ta tin rằng điều kiện để các hiện tượng trên có thể xảy ra ở một số (nếu không muốn nói là hầu hết) tâm của các thiên hà, bao gồm cả Ngân Hà của chúng ta.


Về Đầu Trang Go down
Xem lý lịch thành viên http://a1-trandainghia.forumvi.com
 
tìm hiểu về lỗ đen vũ trụ
Xem chủ đề cũ hơn Xem chủ đề mới hơn Về Đầu Trang 
Trang 1 trong tổng số 1 trang

Permissions in this forum:Bạn không có quyền trả lời bài viết
a1- nơi đong đầy tình bạn :: Your first category :: giải trí :: thiên văn học-
Chuyển đến